3.385 \(\int \frac{b^2 x^m}{(b+a x^2)^2} \, dx\)

Optimal. Leaf size=36 \[ \frac{x^{m+1} \, _2F_1\left (2,\frac{m+1}{2};\frac{m+3}{2};-\frac{a x^2}{b}\right )}{m+1} \]

[Out]

(x^(1 + m)*Hypergeometric2F1[2, (1 + m)/2, (3 + m)/2, -((a*x^2)/b)])/(1 + m)

________________________________________________________________________________________

Rubi [A]  time = 0.0122481, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {12, 364} \[ \frac{x^{m+1} \, _2F_1\left (2,\frac{m+1}{2};\frac{m+3}{2};-\frac{a x^2}{b}\right )}{m+1} \]

Antiderivative was successfully verified.

[In]

Int[(b^2*x^m)/(b + a*x^2)^2,x]

[Out]

(x^(1 + m)*Hypergeometric2F1[2, (1 + m)/2, (3 + m)/2, -((a*x^2)/b)])/(1 + m)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{b^2 x^m}{\left (b+a x^2\right )^2} \, dx &=b^2 \int \frac{x^m}{\left (b+a x^2\right )^2} \, dx\\ &=\frac{x^{1+m} \, _2F_1\left (2,\frac{1+m}{2};\frac{3+m}{2};-\frac{a x^2}{b}\right )}{1+m}\\ \end{align*}

Mathematica [A]  time = 0.0085778, size = 38, normalized size = 1.06 \[ \frac{x^{m+1} \, _2F_1\left (2,\frac{m+1}{2};\frac{m+1}{2}+1;-\frac{a x^2}{b}\right )}{m+1} \]

Antiderivative was successfully verified.

[In]

Integrate[(b^2*x^m)/(b + a*x^2)^2,x]

[Out]

(x^(1 + m)*Hypergeometric2F1[2, (1 + m)/2, 1 + (1 + m)/2, -((a*x^2)/b)])/(1 + m)

________________________________________________________________________________________

Maple [F]  time = 0.038, size = 0, normalized size = 0. \begin{align*} \int{\frac{{b}^{2}{x}^{m}}{ \left ( a{x}^{2}+b \right ) ^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(b^2*x^m/(a*x^2+b)^2,x)

[Out]

int(b^2*x^m/(a*x^2+b)^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} b^{2} \int \frac{x^{m}}{{\left (a x^{2} + b\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(b^2*x^m/(a*x^2+b)^2,x, algorithm="maxima")

[Out]

b^2*integrate(x^m/(a*x^2 + b)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b^{2} x^{m}}{a^{2} x^{4} + 2 \, a b x^{2} + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(b^2*x^m/(a*x^2+b)^2,x, algorithm="fricas")

[Out]

integral(b^2*x^m/(a^2*x^4 + 2*a*b*x^2 + b^2), x)

________________________________________________________________________________________

Sympy [C]  time = 10.0007, size = 377, normalized size = 10.47 \begin{align*} b^{2} \left (- \frac{a m^{2} x^{3} x^{m} \Phi \left (\frac{a x^{2} e^{i \pi }}{b}, 1, \frac{m}{2} + \frac{1}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{8 a b^{2} x^{2} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ) + 8 b^{3} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{a x^{3} x^{m} \Phi \left (\frac{a x^{2} e^{i \pi }}{b}, 1, \frac{m}{2} + \frac{1}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{8 a b^{2} x^{2} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ) + 8 b^{3} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} - \frac{b m^{2} x x^{m} \Phi \left (\frac{a x^{2} e^{i \pi }}{b}, 1, \frac{m}{2} + \frac{1}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{8 a b^{2} x^{2} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ) + 8 b^{3} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{2 b m x x^{m} \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{8 a b^{2} x^{2} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ) + 8 b^{3} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{b x x^{m} \Phi \left (\frac{a x^{2} e^{i \pi }}{b}, 1, \frac{m}{2} + \frac{1}{2}\right ) \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{8 a b^{2} x^{2} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ) + 8 b^{3} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} + \frac{2 b x x^{m} \Gamma \left (\frac{m}{2} + \frac{1}{2}\right )}{8 a b^{2} x^{2} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right ) + 8 b^{3} \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(b**2*x**m/(a*x**2+b)**2,x)

[Out]

b**2*(-a*m**2*x**3*x**m*lerchphi(a*x**2*exp_polar(I*pi)/b, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(8*a*b**2*x**2*gamma
(m/2 + 3/2) + 8*b**3*gamma(m/2 + 3/2)) + a*x**3*x**m*lerchphi(a*x**2*exp_polar(I*pi)/b, 1, m/2 + 1/2)*gamma(m/
2 + 1/2)/(8*a*b**2*x**2*gamma(m/2 + 3/2) + 8*b**3*gamma(m/2 + 3/2)) - b*m**2*x*x**m*lerchphi(a*x**2*exp_polar(
I*pi)/b, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(8*a*b**2*x**2*gamma(m/2 + 3/2) + 8*b**3*gamma(m/2 + 3/2)) + 2*b*m*x*x
**m*gamma(m/2 + 1/2)/(8*a*b**2*x**2*gamma(m/2 + 3/2) + 8*b**3*gamma(m/2 + 3/2)) + b*x*x**m*lerchphi(a*x**2*exp
_polar(I*pi)/b, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(8*a*b**2*x**2*gamma(m/2 + 3/2) + 8*b**3*gamma(m/2 + 3/2)) + 2*
b*x*x**m*gamma(m/2 + 1/2)/(8*a*b**2*x**2*gamma(m/2 + 3/2) + 8*b**3*gamma(m/2 + 3/2)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b^{2} x^{m}}{{\left (a x^{2} + b\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(b^2*x^m/(a*x^2+b)^2,x, algorithm="giac")

[Out]

integrate(b^2*x^m/(a*x^2 + b)^2, x)